2,376 research outputs found

    Natural zeolites and white wines from Campania region (Southern Italy): a new contribution for solving some oenological problems

    Get PDF
    The purpose of this research is to provide a new mixture of Campanian zeolitized tuffs for solving two specific problems in the production of white wines: the protein and tartaric stability. In fact, a very frequent cause of turbidity and formation of organic deposits in white wines is the occurrence of thermolabile and thermostable proteins colloidal suspensions which precipitate in time, especially in summertime and during the storage and transport. Normally, to mitigate this risk wine producers use organic and inorganic stabilizers and clarifiers. The best known treatment, recognized also by the International Organisation of Vine and Wine (OIV) foresees the use of bentonite with a montmorillonite content not lower than 80%. The present paper aims at evaluating the use of two high zeolite grade Italian volcanoclastites such as the Neapolitan Yellow Tuff (NYT) and the Yellow Facies of the Campanian Ignimbrite (YFCI), in the treatment of three peculiar white wines of the Campanian region (Southern Italy): Falanghina, Fiano di Avellino and Greco di Tufo. Granulates were produced starting from tuff blocks as provided by quarries. Some grain size fractions have been prepared to investigate the zeolite content (phillipsite + chabazite + analcime) by X-ray diffraction (XRD). A 2-5 mm grain size fraction was chosen for NYT and a 5-10 mm for YFCI. Three Campanian monocultivar white wines were used for the test: the Falanghina 2006 vintage, the Fiano di Avellino DOCG 2007 vintage, and the Greco di Tufo DOCG 2008 vintage. 48 samples with mixture of the zeolitized tuffs, 1 sample with mixture of a synthetic zeolite A and 1 sample with mixture of a commercial sodium activated bentonite were prepared. ICP-OES analysis for the determination of ECEC, Ion Chromatography (IC) analyses for the determination of some major cations and Turbidimetric tests for the definition of the protein stabilization process before and after treatments were also carried out. It was evidenced that high zeolitized tuff/wine ratios enable the protein stabilization whereas a significant decrease of potassium ion after the treatment with a zeolite-rich powder improves the tartaric stability, a serious problem in all the wine productions. The results of these tests refer to a laboratory scale research. A transfer of the experiment to a pilot plant scale is in progress

    Narcolepsy and emotional experience: a review of the literature

    Get PDF
    Narcolepsy is a chronic sleep disorder characterized by excessive daytime sleepiness, cataplexy, hypnagogic hallucinations, and sleep paralysis. This disease affects significantly the overall patient functioning, interfering with social, work, and affective life. Some symptoms of narcolepsy depend on emotional stimuli; for instance, cataplectic attacks can be triggered by emotional inputs such as laughing, joking, a pleasant surprise, and also anger. Neurophysiological and neurochemical findings suggest the involvement of emotional brain circuits in the physiopathology of cataplexy, which seems to depending on the dysfunctional interplay between the hypothalamus and the amygdala associated with an alteration of hypocretin levels. Furthermore, behavioral studies suggest an impairment of emotions processing in narcolepsy-cataplexy (NC), like a probable coping strategy to avoid or reduce the frequency of cataplexy attacks. Consistently, NC patients seem to use coping strategies even during their sleep, avoiding unpleasant mental sleep activity through lucid dreaming. Interestingly, NC patients, even during sleep, have a different emotional experience than healthy subjects, with more vivid, bizarre, and frightening dreams. Notwithstanding this evidence, the relationship between emotion and narcolepsy is poorly investigated. This review aims to provide a synthesis of behavioral, neurophysiological, and neurochemical evidence to discuss the complex relationship between NC and emotional experience and to direct future research

    The spectroscopic evolution of the γ\gamma-ray emitting classical nova Nova Mon 2012. I. Implications for the ONe subclass of classical novae

    Full text link
    Nova Mon 2012 was the first classical nova to be detected as a high energy γ\gamma-ray transient, by Fermi-LAT, before its optical discovery. We study a time sequence of high resolution optical echelle spectra (Nordic Optical Telescope) and contemporaneous NOT, STIS UV, and CHIRON echelle spectra (Nov 20/21/22). We use [O III] and Hβ\beta line fluxs to constrain the properties of the ejecta. We derive the structure from the optical and UV line profiles and compare our measured line fluxes for with predictions using Cloudy with abundances from other ONe novae. Mon 2012 is confirmed as an ONe nova. We find E(B-V)=0.85±\pm0.05 and hydrogen column density 5×1021\approx 5\times 10^{21} cm2^{-2}. The corrected continuum luminosity is nearly the same in the entire observed energy range as V1974 Cyg, V382 Mon, and Nova LMC 2000 at the same epoch after outburst. The distance, about 3.6 kpc, is quite similar to V1974 Cyg. The line profiles can be modeled using an axisymmetric bipolar geometry for the ejecta with various inclinations of the axis to the line of sight, 60 \le i \le 80 degrees, an opening angle of \approx70deg,innerradius70 deg, inner radius \Delta R/R(t)\approx 0.4forpermittedlinesandlessfilledforforbiddenlines.Thefillingfactor for permitted lines and less filled for forbidden lines. The filling factor f\approx 0.1-0.3implyingM(ejecta) implying M(ejecta) \leq 6\times 10^{-5}MM_\odot.TheONenovaeappeartocompriseasinglephysicalclasswithbipolarhighmassejecta,similarlyenhancedabundances,andacommonspectroscopicevolutionwithinanarrowrangeofluminosities.Thedetected. The ONe novae appear to comprise a single physical class with bipolar high mass ejecta, similarly enhanced abundances, and a common spectroscopic evolution within a narrow range of luminosities. The detected \gamma$-ray emission may be a generic phenomenon, common to all ONe novae, possibly to all classical novae, and connected with acceleration and emission processes within the ejecta (abstract severely truncated).Comment: Submitted to A&A 9/1/2013; Accepted 27/2/2013 (in press

    Zeolite-feldspar epiclastic rocks as flux in ceramic tile manufacturing

    Get PDF
    Low-cost, naturally-occurring mixtures of feldspar and zeolite occurring in epiclastic rocks are promising substitutes for conventional quartz-feldspathic fluxes in ceramic bodies, since their fusibility and low hardness are expected to improve both grinding and sintering. Three epiclastic outcrops, with a different zeolite-to-feldspar ratio, were characterized (XRPD, fusibility) and tested in porcelain stoneware bodies; their behaviour during processing was appraised and compared with that of a reference. The addition of an epiclastic rock (20 wt.%), replacing rhyolite and aplite fluxes, brought about some significant advantages, mainly represented by better grindability, lower firing temperature with improved mechanical strength and lower porosity. Disadvantages concern increased slip viscosity, worse powder compressibility, resulting in larger firing shrinkage, and a darker colour of the tiles due to relatively high amounts of iron oxide

    Hyponatremia in patients with heart failure

    Get PDF
    Mild hyponatremia is encountered frequently in patients hospitalized for worsening heart failure. Admission plasma sodium concentration appears to be an independent predictor of increased mortality after discharge and rehospitalization. Recent studies have suggested that correction of hyponatremia may be associated with improved survival. This hypothesis is currently being studied in large prospective randomized clinical trials

    Revived Fossil Plasma Sources in Galaxy Clusters

    Get PDF
    © 2020 ESO.It is well established that particle acceleration by shocks and turbulence in the intra-cluster medium can produce cluster-scale synchrotron emitting sources. However, the detailed physics of these particle acceleration processes is still not well understood. One of the main open questions is the role of fossil relativistic electrons that have been deposited in the intracluster medium (ICM) by radio galaxies. These synchrotron-emitting electrons are very difficult to study as their radiative lifetime is only tens of Myr at gigahertz frequencies, and they are therefore a relatively unexplored population. Despite the typical steep radio spectrum due to synchrotron losses, these fossil electrons are barely visible even at radio frequencies well below the gigahertz level. However, when a pocket of fossil radio plasma is compressed, it boosts the visibility at sub-gigahertz frequencies, creating what are known as radio phoenices. This compression can be the result of bulk motion and shocks in the ICM due to merger activity. In this paper we demonstrate the discovery potential of low-frequency radio sky surveys to find and study revived fossil plasma sources in galaxy clusters. We used the 150 MHz TIFR GMRT Sky Survey and the 1.4 GHz NVSS sky survey to identify candidate radio phoenices. A subset of three candidates was studied in detail using deep multi-band radio observations (LOFAR and GMRT), X-ray obserations (Chandra or XMM-Newton), and archival optical observations. Two of the three sources are new discoveries. Using these observations, we identified common observational properties (radio morphology, ultra-steep spectrum, X-ray luminosity, dynamical state) that will enable us to identify this class of sources more easily, and will help us to understand the physical origin of these sources.Peer reviewedFinal Accepted Versio

    Carbonaceous PM2.5 and secondary organic aerosol across the Veneto region (NE Italy)

    Get PDF
    Organic and elemental carbon (OC-EC) were measured in 360 PM2.5 samples collected from April 2012 to February 2013 at six provinces in the Veneto region, to determine the factors affecting the carbonaceous aerosol variations. The 60 daily samples have been collected simultaneously in all sites during 10 consecutive days for 6months (April, June, August, October, December and February). OC ranged from 0.98 to 22.34μg/m3, while the mean value was 5.5μg/m3, contributing 79% of total carbon. EC concentrations fluctuated from 0.19 to 11.90μg/m3 with an annual mean value of 1.31μg/m3 (19% of the total carbon). The monthly OC concentration gradually increased from April to December. The EC did not vary in accordance with OC. However the highest values for both parameters were recorded in the cold period. The mean OC/EC ratio is 4.54, which is higher than the values observed in most of the other European cities. The secondary organic carbon (SOC) contributed for 69% of the total OC and this was confirmed by both the approaches OC/EC minimum ratio and regression. The results show that OC, EC and SOC exhibited higher concentration during winter months in all measurement sites, suggesting that the stable atmosphere and lower mixing play important role for the accumulation of air pollutant and hasten the condensation or adsorption of volatile organic compounds over the Veneto region. Significant meteorological factors controlling OC and EC were investigated by fitting linear models and using a robust procedure based on weighted likelihood, suggesting that low wind speed and temperature favour accumulation of emissions from local sources. Conditional probability function and conditional bivariate probability function plots indicate that both biomass burning and vehicular traffic are probably the main local sources for carbonaceous particulate matter emissions in two selected cities

    A measure of centrality based on the spectrum of the Laplacian

    Get PDF
    We introduce a family of new centralities, the k-spectral centralities. k-Spectral centrality is a measurement of importance with respect to the deformation of the graph Laplacian associated with the graph. Due to this connection, k-spectral centralities have various interpretations in terms of spectrally determined information. We explore this centrality in the context of several examples. While for sparse unweighted networks 1-spectral centrality behaves similarly to other standard centralities, for dense weighted networks they show different properties. In summary, the k-spectral centralities provide a novel and useful measurement of relevance (for single network elements as well as whole subnetworks) distinct from other known measures.Comment: 12 pages, 6 figures, 2 table

    Level variations in speech: Effect on masking release in hearing-impaired listeners

    Get PDF
    Acoustic speech is marked by time-varying changes in the amplitude envelope that may pose difficulties for hearing-impaired listeners. Removal of these variations (e.g., by the Hilbert transform) could improve speech reception for such listeners, particularly in fluctuating interference. Léger, Reed, Desloge, Swaminathan, and Braida [(2015b). J. Acoust. Soc. Am. 138, 389–403] observed that a normalized measure of masking release obtained for hearing-impaired listeners using speech processed to preserve temporal fine-structure (TFS) cues was larger than that for unprocessed or envelope-based speech. This study measured masking release for two other speech signals in which level variations were minimal: peak clipping and TFS processing of an envelope signal. Consonant identification was measured for hearing-impaired listeners in backgrounds of continuous and fluctuating speech-shaped noise. The normalized masking release obtained using speech with normal variations in overall level was substantially less than that observed using speech processed to achieve highly restricted level variations. These results suggest that the performance of hearing-impaired listeners in fluctuating noise may be improved by signal processing that leads to a decrease in stimulus level variations.National Institutes of Health (U.S.) (R01DC000117

    Hydrodynamic electron flow in high-mobility wires

    Full text link
    Hydrodynamic electron flow is experimentally observed in the differential resistance of electrostatically defined wires in the two-dimensional electron gas in (Al,Ga)As heterostructures. In these experiments current heating is used to induce a controlled increase in the number of electron-electron collisions in the wire. The interplay between the partly diffusive wire-boundary scattering and the electron-electron scattering leads first to an increase and then to a decrease of the resistance of the wire with increasing current. These effects are the electronic analog of Knudsen and Poiseuille flow in gas transport, respectively. The electron flow is studied theoretically through a Boltzmann transport equation, which includes impurity, electron-electron, and boundary scattering. A solution is obtained for arbitrary scattering parameters. By calculation of flow profiles inside the wire it is demonstrated how normal flow evolves into Poiseuille flow. The boundary-scattering parameters for the gate-defined wires can be deduced from the magnitude of the Knudsen effect. Good agreement between experiment and theory is obtained.Comment: 25 pages, RevTeX, 9 figure
    corecore